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Application of Optimization Techniques to a Nonlinear
Problem of Communication Network Design With

Nonlinear Constraints

Jeffrey E. Wieselthier, Gam D. Nguyen, Anthony Ephremides, and
Craig M. Barnhart

Abstract—Nonlinear optimization under nonlinear constraints is usu-
ally difficult. However, standard ad-hoc search techniques may work suc-
cessfully in some cases. Here, we consider an augmented Lagrangian for-
mulation, and we develop a “projection heuristic” that “guides” the itera-
tive search toward the optimum. We demonstrate the effectiveness of this
approach by applying it to the problem of maximizing a circuit-switched
communication network’s throughput under quality-of-service (QoS) con-
straints by means of choosing the input offered load. This problem is useful
for “sizing” the network capacity. Performance results using several ver-
sions of the algorithm demonstrate its robustness, in terms of its accuracy
and convergence properties.

Index Terms—Admission control, communication network, optimiza-
tion, performance evaluation, quality-of-service (QoS).

I. INTRODUCTION

Nonlinear optimization problems with multiple nonlinear constraints
are often difficult to solve, because although the available mathemat-
ical theory provides the basic principles for solution, it does not guar-
antee convergence to the optimal point [1]. The straightforward appli-
cation of augmented Lagrangian techniques to such problems typically
results in slow (or lack of) convergence, and often in failure to achieve
the optimal solution. In this technical note, we introduce a “projection
heuristic” that “guides” the iterative search more directly and more ro-
bustly to the optimal solution.

We illustrate the effectiveness of this heuristic by applying it to a
problem that arises in communication networks, namely the maximiza-
tion of throughput in multihop, circuit-switched networks that are sub-
ject to quality-of-service (QoS) constraints on blocking probability.
The objective is to determine the offered-load profile that maximizes
throughput, for specified routing and admission-control policies. This
problem is useful for “sizing” the network capacity, i.e., for deter-
mining the maximum throughput that can be supported by the network,
subject to QoS constraints [2]. Issues related to speed of convergence
and quality of solution are addressed. Several versions of the algorithm
are defined, and performance results are presented to illustrate their ro-
bustness.

II. THE OPTIMIZATION PROBLEM

We are interested in nonlinear optimization problems with multiple
nonlinear constraints. In this section, we use Lagrangian techniques to
formulate the basic optimization problem.
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1) Constrained Optimization Problem:

max
�
fS(���)g (1)

subject to:Pj(���) � Qj 1 � j � J

where��� = (�1; . . . ; �J ) is aJ-dimensional input vector, the perfor-
mance measureS(���) is a nonlinear function of the input vector, and
theQj are the values of the constraints imposed on nonlinear functions
Pj(���) of the input vector. For example, in Section III we consider a cir-
cuit-switched networking example in which�j represents the offered
load to circuitj; S(���) is throughput, andPj(���) is the probability that
an incoming call to circuitj is blocked.

Definitions:

• We say that an input vector��� is admissibleif the constraints are
satisfied.

• Theadmissible regioncontains all input vectors that are admis-
sible.

• Corresponding to each admissible vector��� is a value ofadmis-
sible performance.

We convert our constrained optimization problem to an uncon-
strained one by using the augmented Lagrangian function [1] given by

L(���; ) = S(���) +

J

j=1

j minf0; Qj � Pj(���)g

�
d

2
(minf0;Qj � Pj(���)g)

2
: (2)

Our goal is to maximizeL( � ) over���. To do this, we use the iterative
procedure

�j(k + 1) = max �min; �j(k) + �(k)
@L(���; )

@�j

j = 1; . . . ; J k = 1; . . . ; kmax �i(0) = �io � �min

(3)

where�(k) is a stepsize parameter, and

@L(���; )

@�i
=

@S

@�i
+

J

j=1

1(Pj(���) > Qj)

�
@Pj

@�i
[d(Qj � Pj(���))� j ]: (4)

The Lagrange multipliers,i, are updated according to

j(k + 1) = j(k)� 1(Pj(���) > Qj)
c(Qj � Pj(���))

k
(5)

wherec is a positive constant andj(0) = o; j = 1; . . . ; J . The
forms of the gradients ofS andPj are problem specific. A variety of
rules we have used for updating the Lagrange multipliers and stepsize
parameter are discussed in [2]. We refer to the straightforward applica-
tion of the updating rule defined by (3), (4), and (5) as the “basic search
technique.”

III. M OTIVATION FOR THIS FORMULATION: A NETWORKING PROBLEM

We consider a circuit-switched network with predetermined paths
between each pair of source and destination nodes throughout the du-
ration of each accepted session (e.g., voice call). We assume the usual,
“blocked calls cleared,” mode of operation, i.e., unless sessions are ac-
cepted for immediate transmission, they are “blocked” and lost from
the system. Appropriate performance measures for this mode of oper-
ation include blocking probability and throughput.

0018-9286/02$17.00 © 2002 IEEE
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We considerJ source-destination pairs, each of which is assigned
a fixed multihop path (circuit) through the graph of the network that
interconnects them. We letxj (which may be greater than 1) denote
the number of sessions that are ongoing on thejth such circuit, and we
assume that each accepted session consumes a fixed amount of resource
throughout its duration, i.e., a fixed unit of bandwidth is required over
each link in the circuit to support each session. The state of the system
is theJ-dimensional vectorx = (x1; . . . ; xJ ).

The capacity of network element (link or node)i is denoted byTi.
In the wired case,Ti is the number of channels supported by link
i; i = 1; . . . ;M , whereM is the number of links in the network. In
the wireless case,Ti is the number of transceivers at nodei, andM is
the number of nodes in the network.1 Each network element can sup-
port sessions corresponding to several circuits simultaneously, as long
as the state variablesx1; x2; . . . ; xJ satisfy sets of linear constraints of
the form

j2I

xj � Ti; i = 1; . . . ;M (6)

whereIi is the set of circuits that share network elementi.

A. Admission Control

Our ultimate goal is to achieve optimal network performance, which,
however, depends on a large number of factors, notably routing, ad-
mission control, and offered traffic. In [3] and [4], we approached this
problem by exercising an admission-control policy on calls, under the
assumption that routes and offered loads on each of the circuits were
fixed. In this note, we again fix the routes, but instead of determining
the best admission-control policy for a fixed offered load, we determine
the offered load that maximizes throughput for a fixed admission-con-
trol policy, subject to QoS constraints on blocking probability.

We restrict our admission control policies to the class of “threshold”
policies. Threshold controls restrict the number of calls that will be
admitted to the individual circuits, and can be expressed as

xj � Xj ; 1 � j � J (7)

whereXj is the threshold on circuitj. Transceivers are not assigned a
priori to circuits; sessions are accepted as long as the threshold values
(theXj ’s) are not exceeded. In [3] and [4], we also studied “linear-
combination” controls.

Policies that use threshold and/or linear-combination controls are a
subclass of the “coordinate-convex” policies [5]. A stationary admis-
sion-control policy is specified in terms of the set of allowable states

. A new call is admitted if the state to be entered is in the allow-
able region; otherwise, it is blocked and lost from the system. Coor-
dinate-convex control policies are used because they provide a form
of intelligent resource sharing without the complexity of dynamic pro-
gramming.

B. The Solution and Performance Measures

We assume Poisson arrival statistics, and denote the offered load
vector by��� = (�1; �2; . . . ; �J ), where�j is the arrival rate to cir-
cuit j. The service rate vector is��� = (�1; . . . ; �J ), where we let
�j = 1 (1 � j � J). Thus, the corresponding offered load on circuit
j is �j = �j . Furthermore, control is centralized, and the resources
needed to support a circuit are acquired simultaneously when the call
arrives and are released simultaneously when the call is completed.

1For a wireless network model, this translates to the assumption that each
node has several transceivers, and that each session requires the use of one trans-
ceiver at every node in its path; FDMA can then be conveniently assumed for
channel access, provided that there is sufficient bandwidth for all transceivers
to operate simultaneously at noninterfering frequencies.

Calls are blocked when one or more nodes along the path do not have
a transceiver available or when a decision is made not to accept a call,
i.e., to accept the call would bring the system state outside the region
defined by admission-control policy
. Under these conditions, in con-
junction with the use of coordinate-convex policies, it has been shown
[6], [7] that the system state has the product-form stationary distribu-
tion.2 For any allowable state space
, it is straightforward (though
time consuming) to evaluate the normalization constant, which in turn
permits the evaluation of performance measures such as throughput and
blocking probability, which we define as follows:

Sj(���) = throughput on circuitj

= �j(1� Pj(���)) (8)

S(���) = total throughput=
J

j=1

Sj(���)

= �(1� Pav(���)) (9)

Pav(���) = overall blocking probability

=

J

j=1

�j
�
Pj(���): (10)

wherePj(���) is the probability that an incoming call to circuitj is
blocked and� = J

j=1
�j is the overall arrival rate.

The circuit blocking probabilitiesPi(���), the circuit throughput
values Si(���), and the partial derivatives (gradients)@Pj(���)=@�i
and@Sj(���)=@�i, which are used in the Lagrangian update equation
(4), are obtained from the product-form solution. In [6], Jordan and
Varaiya showed that

@Pj(���)

@�i
=

�
�

� �
cov(xi; xj); i 6= j

�

�
(Efxig � var(xi)); i = j

and

@Sj(���)

@�i
=

�j
�i

cov(xi; xj): (11)

IV. GUIDED SEARCH TECHNIQUES

When the basic search technique is applied to the networking
problem of Section III, significant (although nonmonotonic) progress
is typically made in the early stage of the search, whereas consider-
ably less-productive oscillatory behavior is observed as the search
progresses. Moreover, the quality of the solution is often sensitive to
the starting point of the search. A common difficulty in constrained
optimization problems arises because the optimum lies on the search
boundary (i.e., one or more of the circuit blocking probabilities is at
the maximum-permitted QoS value). In unconstrained optimization
problems, gradient search procedures are naturally slowed (smaller
steps) by the decreasing gradient as they approach the optimum.
This slowing allows the search to ascend smoothly to the maximum.
However, when the optimum lies on the boundary, as it often does
in constrained problems,3 there is not necessarily a decrease in the
gradient in its neighborhood. In this case, typical gradient search
techniques rely on damping of the stepsize� to cause the search to
slow and home in on the optimum. However, an overly rapid decrease
in � results in failure to reach the optimal solution, whereas a less
rapid decrease in� can result in unacceptably slow convergence.

2It is not necessary to assume that the call duration is exponential. A
Poisson arrival process and general service time distribution is sufficient for
the product-form solution to apply [8]; knowledge of the means of the service
times provides enough information to determine the equilibrium distribution.

3We believe that, in our optimization problem, at least one of the circuit
blocking probabilities at the optimal point must be at the maximum permitted
value. This conjecture is supported by extensive empirical evidence in a variety
of network examples. We have observed that, typically, between half and all of
the circuit blocking probabilities are at the maximum permitted value.
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The most interesting, and troublesome, behavior occurs when the
search trajectory passes near the QoS constraint contour. The violation
of a constraint results in oscillatory behavior with little progress toward
the optimal point. The desired behavior would be for the search to pro-
ceed along the contour corresponding to the QoS constraint, rather than
at a significant angle to it. We have attempted to mitigate the oscilla-
tory behavior of the basic search technique by using our knowledge of
the throughput and blocking probability gradients to guide the search
more efficiently.

A. Guiding the Search: Preliminary Approach

To illustrate the principle of guided search, we consider an example
in which the blocking probability of the “dominant circuit” (i.e., the cir-
cuit with the largest blocking probability) is close to (say within some
" of) the specified QoS value. We would like to guide the search in a
direction of increasing throughput, so that it tends to proceed parallel
to the contour at which the blocking probability is at the specified QoS
value. To simplify the discussion, let us first consider the case in which
exactly one of the circuit blocking probabilities (the dominant circuit) is
located within" of the QoS constraint, i.e.,Qj�" � Pj(���) � Qj+",
for exactly one value ofj 2 f1; 2; . . . ; Jg. Let us call this circuitc. In
this case, we would like the search to proceed along the component of
the throughput gradientrS that is orthogonal to the circuit blocking
probability gradientrPc at our current point in the search. By elim-
inating the component parallel torPc, we discourage increase in the
blocking probability of the dominant circuit. The desired projection can
be written as

fComponent ofrS orthogonal torPcg

= rS �
rS � rPc

krPck2
rPc (12)

where

rS � rPc =

J

i=1

@S

@�i

@Pc

@�i
=

J

i=1

J

j=1

@Sj

@�i

@Pc

@�i
(13)

andkXXXk = J

j=1
X2

j is the norm of the vectorXXX. Then we intro-
duce a vectorDDD = (D1;D2; . . . ; DJ ) (see Fig. 1), which is equal to
this projection when the blocking probability of the dominant circuit is
located in a band of width2" centered about the QoS contour; other-
wise,DDD is equal to the throughput gradientrS

DDD =
rS �

rS � rPc

krPck2
rPc; QoS� " � Pc � QoS + "

rS; otherwise:
(14)

We modify the Lagrangian objective function of (4) by insertingDi

in place of@S=@�i as follows:

@L(���; )

@�i
= Di +

J

j=1

1(Pj(���) > Qj)

�
@Pj

@�i
[d(Qj � Pj(���))� j ]: (15)

Fig. 1. DDD = component ofrS that is orthogonal torP .

B. Guiding the Search: Generalized Approach

The use of the projection operation described above removes the
component ofrS that is parallel torPc. By doing so, we update��� in
a direction that increases throughput without increasingPc. However,
the typical consequence of doing so is that one or more of the other
circuits will soon violate the QoS constraint. At a typical point in the
search, it is common for several circuits to violate the QoS constraint or
to be sufficiently close to the QoS boundary that the QoS constraint is
in danger of being violated. For example, we have observed behavior
in which the chosen circuit for the projection alternates among two
or three of the circuits, resulting in oscillatory behavior in which little
progress is made toward the optimal solution. To mitigate this behavior,
we have considered a generalized form of the projection operation in
which several circuits are included in the projection. The inclusion of
several circuits takes into consideration the fact that we are dealing with
a number of constraints simultaneously. Thus, we would like to update
��� in a direction that discourages violation of any of the QoS constraints.

To incorporate the QoS constraints associated with some or all
of the circuits into the search-guiding mechanism, we introduce the
quantityP�, which is a function of the circuit-blocking probabilities
P1; P2; . . . ; PJ . In this note, we have used the following simple, linear
form for P�:

P� =
i2�

Pi (16)

where� is a subset off1; 2; . . . ; Jg. The vectorDDD, introduced in (14),
is then rewritten as (17), as shown at the bottom of the page. The pro-
jection vectorDDD specified by (17) removes the component ofrS that
is in the direction of the gradient of theaverageblocking probability of
the circuits included in�. This expression is identical to that of (14),
except thatP� replacesPc in the dot products, and that the projection
operation is used only when the resulting value ofkDDDk is sufficiently
large. The reason for using the projection operation only when it pro-
vides a sufficiently large value ofkDDDk is based on our experimental ob-
servation that (in some cases) the trajectory can reach a point at which
kDDDk is quite small. This behavior results in slow progress toward the
optimal point, or even virtually total stopping of the trajectory, resulting
in premature convergence; in fact, the trajectory can converge to a point
interior to the admissible region (thus none of the circuit blocking prob-
abilities are at the specified value, a condition not characteristic of the
optimal point). This behavior is especially prevalent when the set�
is large (e.g., we have considered cases in which� contains allJ cir-
cuits). It occurs when the gradients ofS andP� are nearly parallel
to each other. Turning off the projection operation (typically for just a
single iteration) permits the trajectory to escape from such undesirable
points. We have found that a value of� = 0:1 works well.

Care must also be taken in the choice of several other parameters
used in the algorithm, such as the choice ofc (used in updating the
Lagrange multipliers in (5) andd (which weights the penalty term in

DDD =
rS �

rS � rP�
krP�k2

rP�; if rS �
rS � rP�
krP�k2

rP� > �krSk

rS; otherwise
: (17)
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(15). The use ofc = d = 50 worked well for high values of QoS (e.g.,
�0:2), but not for more realistic values. The relatively poor perfor-
mance for low values of QoS was observed because the gradient terms
@Pj=@�i were too small to drive the search back into the admissible
region at the low offered loads that are characteristic of low values of
QoS. We have observed experimentally that this problem can been mit-
igated by weighting the constraint-violation terms by1= Qj (while
maintainingc = d = 50) as follows:

@L(���; )

@�i

= Di + �

J

j=1

1(Pj(���) > Qj)

�
@Pj

@�i

[d(Qj � Pj(���))� j ]

Qj

(18)

where� is a “kick-up” factor that can be updated (increased from an
initial value of 1) as necessary, e.g.,� can be increased if too many
consecutive inadmissible solutions are observed, or decreased if too
many consecutive admissible solutions are observed (after the inad-
missible region has been entered at least once). The incorporation of
these heuristic fixes into the update equation has resulted in a robust
algorithm that does not require the fine-tuning of parameters.

V. ALTERNATIVE VERSIONS OF THEALGORITHM

We have studied several versions of the algorithm based on (18),
which differ in their use of the dot-product projection and in the step-
size update rule. Here, we briefly describe one of our approaches; a
complete discussion is provided in [2]. In our discussion, it is implic-
itly assumed thatQj = constant; j = 1; . . . ; J , (i.e., that all circuits
are subject to the same constraint on maximum blocking probability),
although it is certainly possible to define projection rules that incorpo-
rate different QoS values (see [2]).

A. Projection Rules

The projection rule, as described in Section IV-B, guides the
search by removing the component of the throughput gradient that
is parallel torP�, whereP� =

j2�
Pj , for some subset� of

f1; 2; . . . ; Jg. The effect of the projection is to remove the component
of the throughput gradient that is in the direction of the gradient of
the sum of the blocking probabilities (or, equivalently, the gradient
of the average blocking probability) of the circuits included in�. By
including several circuits in�, it is possible to discourage (although
not necessarily prevent) the blocking probabilities of these circuits
from exceeding the QoS constraint value. In addition, the oscillatory
behavior that results from the use of a single circuit (the identity of
which typically alternates among a small set of circuits) in the dot
product is reduced. However, it must be acknowledged that the use
of the projection is a heuristic approach. The performance results
presented in Section VI and [2] demonstrate that, if used judiciously,
the projection can, in fact, be very helpful.

In most versions of the algorithm studied in the core runs of [2], we
used a version of the projection rule in which� is defined as follows:

� = fj : Pj � pmin + �(pmax � pmin)g (19)

wherepmin = minfPj ; j = 1; 2; . . . ; Jg; pmax = maxfPj ; j =
1; 2; . . . ; Jg, and� 2 [0; 1]. The parameter� can be chosen to include
either few or many circuits, as desired. For example, for the network
discussed in this note, the choice of� = 0:2 causes, on the average,
about eight (out of ten) circuits to be included in� (thus� is a large
set). Alternative choices for the set� are considered in [2].

We have observed that the use of a large set� tends to keep the tra-
jectory well inside the admissible region during the early phase of the
search, and discourages the trajectory from straying too far into the in-
admissible region once the QoS-constraint boundary has been crossed.
However, although the neighborhood of the optimal point is reached
rapidly, it is common for the trajectory to proceed past it, eventually
converging to a point relatively far from the optimal. Apparently, the
algorithm does not converge to the true optimal point because of the
distortion introduced by the use ofDDD rather thanrS.

Based on these observations, which have been supported by exten-
sive numerical results, we have concluded that it is often best to use a
large set� during the early phase of the search, and then to turn off the
projection term (i.e., set� = ;, the empty set) at some point during
the search. When the projection is turned off, the final approach to the
optimal solution can be made without the presence of distortion.

B. Stepsize Considerations

Typically, we have chosen the initial stepsize�0 on the basis of a
short pilot run in which the projection is not used; it is chosen so that,
starting at�i = 0, the trajectory exits the admissible region for the first
time after about five to fifteen iterations. The same value of�0 is used
whether or not the projection is used in the actual search.

We have found that a first exit point of five iterations works well for
large values of the QoS constraint, e.g., 0.3. However, this approach ap-
pears to produce an excessively large initial stepsize for small values,
e.g., 0.001. Thus, in some of our examples forQj = 0:001 we have
used an initial value of� that is half that produced by using the rule
based on exiting the admissible region for the first time at the fifth itera-
tion. To explain the difference in behavior, consider the terms@Si=@�i

derived from (4), which are usually significantly larger than the terms
@Si=@�j , whenj 6= i. These “diagonal” terms have a value close
to 1 at the low offered loads that are characteristic of low blocking
probability; however, these terms are considerably smaller at offered
loads characteristic of significantly higher blocking probability (typ-
ical average values are approximately 0.3 in many of our examples
for Qj = 0:3). Thus the use of smaller stepsizes at low QoS values
compensates for the larger values of throughput gradient at the corre-
sponding offered loads.

VI. PERFORMANCERESULTS FOR ANETWORKING EXAMPLE

In this section, we discuss the performance of the search algorithms
in terms of the evolution of the admissible throughput as the search
progresses. We refer to the version that uses the projection in the first
phase, simply as the “projection algorithm.” We also present results
for the basic search technique, which does not use the projection at all.
Both of these versions are based on a stepsize rule in which� is constant
for 100 iterations, then decreases exponentially to 0.1 of its initial value
after an additional 100 iterations, and then decreases exponentially to
0.001 of its initial value after an additional 800 iterations. In the version
with the projection algorithm,� = 0:2 is applied for the first 100 iter-
ations; the projection operation is turned off by setting� = ; for the
next 900 iterations. Alternative stepsize and projection rules are dis-
cussed in [2].

Fig. 2 shows the “admissible” throughput (i.e., values are not shown
when the QoS constraint is violated) for both the basic search tech-
nique and projection algorithm for the case of Network 1 withTi =
6; Xj = 4, andQj = 0:3(1 � j � J).4 This example is typical, in

4This “unrealistically high” value of blocking probability was used because
it typically results in a more-difficult optimization problem than lower values
(e.g.,Q = 0:001), in the sense that a greater number of iterations is usually
needed.
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(a)

(b)

Fig. 2. Evolution of admissible throughput;Q = 0:3. (a) Basic search
technique. (b) Projection algorithm.

that the use of the projection operation provides a smoother ascent to
good throughput values early in the search, and hence typically faster
attainment of the 95% and 98% milestones5 [2]. However, there is usu-
ally less difference in the speed with which the higher milestones are
reached, and sometimes the basic search technique reaches them faster.

We discovered in our early studies that the use of the projection op-
eration often prevents convergence to the optimal solution, especially
when a relatively large number of circuits are included in the projec-
tion. We may view the use of the projection term in the first phase(s) as
the determination of an “initial condition” for the “undistorted” version
of the algorithm (i.e., the version without the projection term). Thus, as
long as the trajectory is brought sufficiently close to the neighborhood
of the optimal solution in the early phase(s), the undistorted version of
the algorithm should bring the solution close to the optimal point be-
fore the end of the allotted 1000 iterations.

Even for network examples in which all versions converge to nearly
the same point, the use of the projection operation can have a pro-
found impact on the behavior of the algorithm. For example, when a
large number of circuits are included in the projection set� (e.g., by
using a relatively small value of� such as 0.2), a relatively smooth
(although perhaps somewhat slow) trajectory is observed in which the
throughput increases monotonically to a large percentage of the bench-
mark throughput value before exiting the admissible region for the first
time. By contrast, when the projection operation is not used, the trajec-
tory is much rougher, with considerably larger deviations in offered
load and throughput from one iteration to the next. Although it is in-
deed possible to achieve some of the high milestone values relatively
early in the run when the projection is not used, it may be a matter of
“luck” as to whether or not such points are indeed found early. Even
if they are found, the trajectory will often move far from these points
because of the large stepsize. Based on the extensive testing discussed
in [2], it appears that the smoothing effect of the projection operation
with � = 0:2 permits the effective use of relatively aggressive stepsize
rules, thus permitting faster convergence.

Our primary conclusion, obtained by examining the data presented in
[2], is that virtually all versions of the algorithm perform well, based on
the criterion of providing optimal (or nearly optimal) throughput within
1000 iterations. However, use of the projection operation in the early
part of the search can be beneficial. For example, it typically results in
reaching the 95% and 98% milestones faster than is possible with the

5For example, the “95% milestone” is the first point at which an admissible
throughput value as high as 95% of the best value (observed for any algorithm
for the current problem) is obtained.

basic search technique, and, as just noted it permits the use of more
aggressive stepsize rules, which result in faster overall convergence.

A. An Observation

One characteristic property of the optimal solution in constrained
optimization problems such as ours is that at least one of the circuit
blocking probabilities must be at the maximum permissible value, i.e.,
atQj . To measure how close the individual circuits approach this value,
we introduce the normalized circuit blocking probabilities

P̂j = Pj=Qj ; j = 1; . . . ; J: (20)

ThusP̂j = 1 whenPj = Qj .
The fact that not all blocking probabilities are near the specified QoS

level whenQj = 0:3 is not surprising. It is not a failure of the algo-
rithm, but rather reflects the fact that the level of interaction among the
circuits increases as offered load increases.6 Thus, there does not exist
a set of offered-load values for which all blocking probabilities are at
the maximum permitted QoS value when that value is relatively high
(e.g., 0.3).

On the basis of these observations, as well as additional discussion
in [2], it appears that whenever the optimal solution does, in fact, lie
very close to the QoS contour in all dimensions, there is very little dif-
ference in the quality of the solutions produced by the various versions
of the algorithm. Also, it appears that our algorithm is more robust in
such cases; typically, fewer iterations are needed, and more aggressive
stepsize rules (resulting in faster attainment of milestones) are usually
successful. Furthermore, we believe that one can have more confidence
in the quality of the solution if the blocking probabilities are all close to
the QoS constraint value. In some cases (particularly when several of
the blocking probabilities are far from the QoS boundary), the network
designer/manager might want to run several versions of the algorithm
to ensure that the solution is close to the true optimum.

B. An Alternative QoS Constraint: Average Blocking Probability

In [2], we also considered an alternative version of the QoS con-
straint in which we require only that the average blocking probability in
the network satisfy this constraint. It was shown that relaxing the QoS
constraint in this manner results in not only higher throughput values,
but also in considerably faster convergence, even when the projection
operation is not used. Both of these characteristics are a consequence
of the need to satisfy only a single average QoS constraint, which per-
mits the set of offered loads to trade off among themselves more easily
than the case in which the QoS constraint must be satisfied on each
individual circuit. In view of the ability of the basic search technique
to obtain optimal solutions rapidly and reliably without using the pro-
jection operation, we do not consider this alternative constraint in the
present note.

VII. CONCLUSION

In this note, we have addressed the solution of nonlinear opti-
mization problems with multiple nonlinear constraints, based on the
use of Lagrangian techniques with a penalty function. We observed
several shortcomings associated with standard Lagrangian techniques.
First, there was no guarantee of convergence and no guarantee of
approaching the optimal solution. Second, there were many parameters
that could be “tuned” and thus affect the solution. Third, the direct use
of standard versions of the Lagrangian techniques were very slow and
often fraught with oscillations.

6The values of the partial derivatives(@P =@� ) used in the update equations
are increasing functions of the offered load.
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Therefore, we proposed a heuristic modification to the search algo-
rithm, which is based on the use of the projection of the gradient on an
appropriate plane determined by the constraint surfaces, and found that
there was improvement in all aspects of the search. If, in addition, fine
tuning of the parameters was used, the resulting results were indicative
(although, still, not assuring) of convergence to the optimal solution at
reasonable speeds.

In this note we have applied the projection algorithm to a nonstan-
dard problem in communication networking. The proposed problem is
useful and meaningful in two distinct ways. First, it establishes a “ca-
pacity-like” result for a given network in which the routes are fixed.
In other words, even though the network operator normally will not
choose the input load vector (although via pricing controls even this
choice can be implemented), it will be possible to predetermine what
the ultimate capabilities of the network are for the chosen set of routes.
That is, it will permit the network operator to “size” the network and
thus enrich the control capabilities in its operation.

Second, the optimal routing problem, i.e., finding the best routes for
a given input load, although a typical network operation problem, is
essentially unsolvable. It is an NP-complete combinatorial optimiza-
tion problem. This is why routing in circuit-switched networks, like the
Public Switched Telephone Network, has been the object of study for
many years and has generated a large number of suboptimal heuristics.
This is in contrast to the packet-switched, datagram routing problem,
which is a well-behaved and essentially solved problem. Therefore,
when a set of routes is chosen for a given input load, it is likely to
be used for a period of time even if the input load changes. Dynamic
adjustment of heuristically obtained suboptimal routes on a short time
scale is not feasible, nor does it make much sense. Consequently, the
approach we introduce in this note permits the network operator to es-
tablish the maximum throughput this set of routes is capable of carrying
(while meeting the blocking probability requirements), and thereby es-
tablish how much of a gap there is between the achieved throughput and
the achievable throughput (i.e., how much of a mismatch there is be-
tween the actual input load and the actual set of routes). This knowledge
could be used, in fact, as a criterion for deciding whether to re-solve

the routing problem and change the set of circuit paths of the network.
Thus, although on its surface the problem we propose may appear un-
orthodox, we believe it offers a totally novel tool for network operation
and design.

Although we did not investigate the applicability and usefulness of
this heuristic in other nonlinear optimization problems (from the net-
working area or from other disciplines), we suspect that it possesses
inherent robustness properties that are likely to make it applicable else-
where as well. We also believe that our investigation yields further evi-
dence that, in the field of communication networks, there are opportu-
nities for fertile use of optimization theory techniques, as observed in
[9].
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